-
Module 1: Introduction to real-time intelligence
15 Lessons-
StartModule introduction
-
StartWhat is real-time intelligence ?
-
StartWhy real-time matters
-
StartLatency vs freshness trade-offs
-
StartBatch processing vs streaming
-
StartWhat does Fabric Real-Time Intelligence provide ?
-
StartWhat are events ?
-
StartWhat are streams ?
-
StartWhat is ingestion ?
-
StartWhat is processing ?
-
StartWhat are actions ?
-
StartWhat is the real-time hub ?
-
StartLab 1 video walkthroughs
-
StartLab 1
-
StartQuiz 1
-
-
Module 2: Common real-time data sources
18 Lessons-
StartModule introduction
-
StartEvent-driven vs request-driven systems
-
StartMessage brokers and event streams
-
StartAzure Event Hubs
-
StartAzure IoT Hub
-
StartUsing AMQP vs HTTP
-
StartApache and Confluent Kafka
-
StartRabbit MQ
-
StartMessage queue comparisons
-
StartDatabase CDC sources
-
StartDatabase CES sources
-
StartCDC vs CES comparison
-
StartAzure and AWS storage events
-
StartAzure and Fabric events
-
StartHow Fabric connects to external sources
-
StartLab 2 video walkthroughs
-
StartLab 2
-
StartQuiz 2
-
-
Module 4: Event ingestion in Fabric
12 Lessons-
StartModule introduction
-
StartWhat are eventstreams ?
-
StartEvent processing inputs
-
StartEvent processing outputs
-
StartIngestion modes
-
StartFiltering events
-
StartMapping events
-
StartRouting events
-
StartDesigning Eventstream pipelines
-
StartData quality in real-time
-
StartWhat are event schema sets ?
-
StartQuiz 4
-
-
Module 5: Transforming real-time data
18 Lessons-
StartModule introduction
-
StartFiltering
-
StartManaging fields
-
StartAggregating
-
StartJoining with other streams
-
StartGrouping
-
StartApplying temporal windows
-
StartTumbling
-
StartSliding
-
StartSession
-
StartHopping
-
StartSnapshot
-
StartApplying union
-
StartExpanding
-
StartUsing custom SQL code
-
StartLab 5 video walkthroughs
-
StartLab 5
-
StartQuiz 5
-
-
Module 6: Querying and processing real-time data
12 Lessons-
StartModule introduction
-
StartEventstream destinations
-
StartKQL databases
-
StartUsing visual exploration
-
StartQuerying using KQL
-
StartWhat are KQL Querysets ?
-
StartJoining using KQL
-
StartQuerying using SQL
-
StartJoining using SQL
-
StartWhen to use KQL or SQL
-
StartHandling late-arriving or out-of-order data
-
StartQuiz 6
-
-
Module 7: Querying with KQL
16 Lessons-
StartModule introduction
-
StartWhat is KQL ?
-
StartCore concepts of KQL
-
StartBasic query syntax
-
StartFiltering
-
StartProjections, extensions, and aliases
-
StartWorking with time series
-
StartAggregations
-
StartJoins and lookups
-
StartAdvanced operators
-
StartFunctions in KQL
-
StartAnomaly detection
-
StartTrend analysis
-
StartLab 7 video walkthroughs
-
StartLab 7
-
StartQuiz 7
-
-
Module 8: Integrating analytics and visualization
14 Lessons-
StartModule introduction
-
StartCreating real-time dashboards
-
StartStreaming to lakehouses
-
StartStreaming to warehouses
-
StartBuilding alert-driven workflows
-
StartThresholds
-
StartAnomalies
-
StartCreating Power BI reports on real-time data
-
StartReal-time APIs and operational integration
-
StartUsing Fabric Maps with Real-Time Intelligence
-
StartBuilding digital twins
-
StartLab 8 video walkthroughs
-
StartLab 8
-
StartQuiz 8
-
-
Module 9: Acting on real-time events
13 Lessons-
StartModule introduction
-
StartWhat is Fabric Activator ?
-
StartUnderstanding objects and signals
-
StartWhat are rules ?
-
StartDetecting patterns
-
StartTriggering actions
-
StartIntegrating Power Automate
-
StartIntegrating Logic Apps
-
StartTriggering Teams, Emails, and Workflows
-
StartMonitoring and managing triggers
-
StartLab 9 video walkthroughs
-
StartLab 9
-
StartQuiz 9
-
-
Module 10: Architecture and best practices
14 Lessons-
StartModule introduction
-
StartDesigning for scale
-
StartDesigning for reliability and resilience
-
StartHandling backpressure
-
StartHandling retries
-
StartProviding fault tolerance
-
StartReplay and Reprocessing
-
StartSecurity and governance for pipelines
-
StartGovernance and compliance
-
StartCost considerations for streaming vs batch
-
StartCost and performance optimization
-
StartMonitoring and observability
-
StartCommon pitfalls in real-time projects
-
StartQuiz 10
-
-
Module 14: Advanced concepts
13 Lessons-
StartModule introduction
-
StartHybrid architectures
-
StartData retention strategies
-
StartScaling eventstreams
-
StartKQL materialized views
-
StartPartitioning strategies
-
StartCross-database and cross-cluster queries
-
StartUsing wildcards with union
-
StartUsing special functions
-
StartUsing update policies to transform data
-
StartLab 14 video walkthroughs
-
StartLab 14
-
StartQuiz 14
-
-
Module 15: Real-time AI integration
11 Lessons-
StartModule introduction
-
StartIntegrating with machine learning
-
StartAI-powered anomaly detection
-
StartAI anomaly detector - how it works
-
StartAI anomaly detector - available models
-
StartAI anomaly detector - use cases
-
StartAI anomaly detector - limitations
-
StartIntegrating with MCP-based agents
-
StartBuilding real-time RAG with Eventhouse
-
StartUsing an Eventhouse as a vector database
-
StartQuiz 15
-
-
Module 16: Advanced integration and future trends
13 Lessons-
StartModule introduction
-
StartIntegrating with Kafka Streams
-
StartIntegrating with Flink
-
StartIntegrating with Spark Structured Streaming
-
StartIntegrating with Google Cloud Pub-Sub
-
StartIntegrating with MQTT
-
StartIntegrating KQL follower databases
-
StartFabric RTI vs Azure Stream Analytics
-
StartEmerging patterns for real-time
-
StartDigital Twins
-
StartEdge scenarios
-
StartLab 16 video walkthroughs
-
StartQuiz 16
-
